Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice.
نویسندگان
چکیده
The unique physical and chemical properties of nanomaterials have led to their increased use in many industrial applications, including as a paint additive. For example, titanium dioxide (TiO2) engineered nanoparticles (ENPs) have well-established anti-UV, self-cleaning, and air purification effects. Silver (Ag) ENPs are renowned for their anti-microbial capabilities and silicon dioxide (SiO2) ENPs are used as fire retardants and anti-scratch coatings. In this study, the toxic effects and biodistribution of three pristine ENPs (TiO2, Ag, and SiO2), three aged paints containing ENPs (TiO2, Ag, and SiO2) along with control paints without ENPs were compared. BALB/c mice were oropharyngeally aspirated with ENPs or paint particles (20 μg/aspiration) once a week for 5 weeks and sacrificed either 2 or 28 days post final aspiration treatment. A bronchoalveolar lavage was performed and systemic blood toxicity was evaluated to ascertain cell counts, induction of inflammatory cytokines, and key blood parameters. In addition, the lung, liver, kidney, spleen, and heart were harvested and metal concentrations were determined. Exposure to pristine ENPs caused subtle effects in the lungs and negligible alterations in the blood. The most pronounced toxic effects were observed after Ag ENPs exposure; an increased neutrophil count and a twofold increase in pro-inflammatory cytokine secretion (keratinocyte chemoattractant (KC) and interleukin-1ß (IL-1ß)) were identified. The paint containing TiO2 ENPs did not modify macrophage and neutrophil counts, but mildly induced KC and IL-1ß. The paints containing Ag or SiO2 did not show significant toxicity. Biodistribution experiments showed distribution of Ag and Si outside the lung after aspiration to respectively pristine Ag or SiO2 ENPs. In conclusion, we demonstrated that even though direct exposure to ENPs induced some toxic effects, once they were embedded in a complex paint matrix little to no adverse toxicological effects were identified.
منابع مشابه
Toxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and HepG2 Cell Line
Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, textiles and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles are largely used in various commercially available products. Thus, the use of nano-silver is becoming ...
متن کاملToxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and HepG2 Cell Line
Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, textiles and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles are largely used in various commercially available products. Thus, the use of nano-silver is becoming ...
متن کاملRoute of administration induced in vivo effects and toxicity responses of Zinc Oxide nanorods at molecular and genetic levels
Zinc oxide (ZnO) nanoparticles have received growing attention for several biomedical applications. Nanoparticles proposed for these applications possess the potential to interact with biological components such as the blood, cells/ tissues following their administration into the body. Hence we carried out in vivo investigations in Swiss Albino Mice to understand the interaction of ZnO nanorods...
متن کاملRoute of administration induced in vivo effects and toxicity responses of Zinc Oxide nanorods at molecular and genetic levels
Zinc oxide (ZnO) nanoparticles have received growing attention for several biomedical applications. Nanoparticles proposed for these applications possess the potential to interact with biological components such as the blood, cells/ tissues following their administration into the body. Hence we carried out in vivo investigations in Swiss Albino Mice to understand the interaction of ZnO nanorods...
متن کاملThe Effect of Transition Metals Incorporation on the Structural and Magnetic Properties of Magnesium Oxide Nanoparticles
Pure and doped magnesium oxide nanoparticles were successfully synthesized employing a sol-gel process. The synthesized nanoparticles were characterized by thermal differential analysis, X-ray powder diffraction, transmission electron microscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometer. X-ray diffraction patterns confirmed the crysta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 141 1 شماره
صفحات -
تاریخ انتشار 2014